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Phase transitions and critical phenomena in the liquid bridge under lateral acceleration
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We study the shape of a liquid body under the influence of a lateral body force in a thin liquid bridge. The
shape of the liquid body changes continuously or discontinuously depending on the volume of liquid body. We
show that the transition from discontinuous to continuous change is described by the volume-induced phase
transition driven by the lateral body force. The order parameter of the phase transition is the amount of shift of
the center of mass of liquid body. Critical exponents of a mean-field model have been obtained by numerical
calculation. We provide the validity of this critical behavior through them4 model of Landau theory of phase
transition.
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The investigation of phase transitions and critical ph
nomena has a long history. This subject has been stu
mainly from thermal fluctuations except in the case of qu
tum fluctuations. We present in this work a phase transit
induced by nonthermal fluctuations. The system we tr
here is a liquid bridge, a liquid body joining two solid su
faces. The problem of liquid bridges has attracted a g
deal of attention in the area of applied science rece
@1–3#. For growing single crystals in the floating zone tec
nique@4#, liquid bridges can play an important role. In add
tion, the liquid bridges show an interesting behavior in t
change of morphology under the action of a lateral for
which may be described by concepts of conventional crit
phenomena and phase transitions.

The energy of a liquid with a free surface is dominated
the surface energy given by the surface tension times
surface area that depends on the amount of deformation
volume. For a liquid bridge under the action of lateral forc
the energy of the system is described by the lateral forc
addition to those two parameters. The amount of deforma
plays the role of order parameter describing the change
morphology of a liquid bridge. Compared with the seco
order phase transition of the conventional kind@5#, one may
expect that the lateral force and the volume play the role
external field and temperature, respectively. We will sh
that this is the case in what follows. In addition, we analy
the morphology transition phenomena on a macrosco
scale, implying that there are no microscopic fluctuations
the Hamiltonian of a liquid brdige. Thus mean field theo
will be sufficient to understand the morphology transiti
occurring in the liquid bridge. Special features such as th
mal fluctuations in nanometer length scale have been
viewed @6#.

The experiments on liquid bridges are restricted to spe
conditions, such as Plateau’s tank@7#, millimetric liquid
bridge cell@8#, and spacecraft@4# due to a high sensitivity to
body forces. Recently, electromagnetic levitation techniq
have been used to compensate the gravity of earth@9#. Many
studies have been done on the stability of liquid bridge
various situations of joining solid surfaces and for axisy
metric and nonaxisymmetric liquid bodies@1,10–14#. It has
been shown that the shape of a liquid bridge undergoe
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discontinuous transition from axisymmetric to nonaxisy
metric asV increases for a given slenderness or as slen
ness decreases for a given volume@15,16#.

We study the change of the shape of a liquid bridge driv
by lateral body forces from the point of view of phase tra
sitions and critical phenomena. Since our interest is no
technical applications but in physical understanding, we c
sider the simplest possible configuration of a liquid bridg
i.e., a liquid body joining two concentric and parallel disks
the same radius under zero gravity. The inset of Fig. 1 sh
the configuration explicitly. This simplest configuration
described by dimensionless parameters, such as slende
L[h/R, normalized volumeV[V0 /(2hpR2), and the
Bond numberh[raR2/n, wherer means the density dif-
ference between liquid body and its environment andn de-
notes the coefficient of surface tension.V0 is the volume of a
liquid body anda is the lateral acceleration.h and R are
geometric scales shown in the inset of Fig. 1.

The purpose of this work is to understand the change
the shape of a liquid body as a volume induced phase t

FIG. 1. Change of center of massX depending on lateral forcef
for various volumes. The curves betweenV51.3125 andV51.325
correspond to volumesV51.315, 1.3175, 1.32, and 1.3225, respe
tively. Inset is the schematic diagram of liquid bridge used in t
study.
©2001 The American Physical Society02-1
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sition driven by lateral forces. For this purpose, we need
obtain stable equilibrium shape of a liquid bridge under l
eral acceleration for a given slenderness. The minimum
ergy method@14# is a way to get a stable equilibrium shap
The present method finds a stable equilibrium shape o
liquid body by getting a configuration that has equal pr
sures at any point of liquid surfaces. This method is m
effective than the minimum energy method. We cover
liquid surface in terms of finite numbers of triangles for n
merical calculations@14,17#. The degree of accuracy in
creases as the number of triangles increases.

The mechanical pressure is written as

P~rW !52
n̂r•FW r

Sr
5

n̂r•¹ rE

Sr
5n

n̂r•“ rS

Sr
, ~1!

wheren̂r is the outward normal unit vector at pointrW, FW r5
2“ rE52n“ rS is the force due to surface tension at po
rW on the surface, andSr is the small area of surface aroun
the pointrW.

The position of the center of mass of a liquid body
obtained after getting a stable shape for a given volume
Bond number and measured from the axis of disks. T
plays the role of an order parameter describing the ph
transition. Since the quantityV0h is a measure of latera
body forces for a given liquid and a given geometrical co
figuration, we introduce a new notationf for this quantity.
Figure 1 plots the position of center of massX expressed in
units of R, versusf [h(V0 /R3)5MaR2/n for various vol-
umes when only the value off increases. As the volum
increases, a continuous transition changes into a discon
ous one near a renormalized volumeVc'1.3125, above
which the liquid bridge has a hump like the one shown in
inset. Experiments@15,16# suggest that the lateral acceler
tion is most sensitive to symmetry breaking of the shape
the parameter regime 1.3,V,1.4 for the slendernessL
50.225. We, therefore, choose this region for our theoret
study. Even though many efforts have been devoted to s
the effect of lateral acceleration@8,11,12#, to our knowledge
no analysis has been made from phase transition poin
view.

The lines of Fig. 1 are similar to those of the isotherms
a pressure-volume diagram of the liquid-vapor phase tra
tion. This fact leads us to an understanding of the res
through an analogy to phase transitions. It is interesting
note that volumeV, body forcef, and center of massX in
Fig. 1 play the roles of inverse temperature, pressure,
specific volume in the liquid-vapor transition, respective
There is a hysteresis found in supercooling and supersa
tion originating from a surface effect@18#. Therefore, the
unstable region@5# expressed by vertical lines in Fig. 1 look
asymmetric. The lines for decreasingf will give another
asymmetric unstable region, shifted a little. The Maxw
construction will give rise to a symmetric unstable regio
which corresponds to the coexistence regime of left and r
humped states of a liquid bridge.

We first analyze the critical behaviors of the second or
phase transition. The order parameterDX describing second
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order transition is chosen as the length of vertical strai
line for a givenV.Vc in Fig. 1. The slopes at broken line
and the line with inflection correspond to compressibiliti
and the critical isotherm, respectively. We plot these beh
iors in Fig. 2.

Solid squares in Fig. 2 show the ordering parameterDX
versusV. Solid dots show the change of the isochoric co
pressibility defined byKV5(]X/] f )V by measuring maxi-
mum slopes in Fig. 1. The inset of Fig. 2 shows the relat
betweenf 2 f c and uX2Xcu at Vc , which corresponds to the
equation of states atVc . Solid lines are least-squares fits fo
the functionsDX;uVc2Vu1/2, KV;uV2Vcu21, and f 2 f c

;uX2Xcu3 at Vc51.3133, which is obtained from the firs
fit. The last fit gives rise toXc50.0716. Good least-square
fit in the transition region imply the critical exponent of th
order parameterb51/2, compressibility exponentsg5g8
51, and the exponent of critical isothermd53 @18,5#. These
are well-known classical values of the exponents. In conc
sion, the analysis of Fig. 2 supports a critical transition rat
than a crossover.

Even though above numerical analysis strongly impl
the existence of critical phenomena in the liquid bridge, th
oretical support is needed to clarify it. This can be done
constructing a thermodynamic function appropriate for d
scribing phase transitions. To make the problem simple,
assume a fixed contact line between liquid and solid s
faces, which is the case when the edges are sharp. This
dition makes the adhesion energy constant. We also ass
the interaction energy inside the surface constant. Thus,
internal energy of this system is governed by the surf
energy that is given by free-surface areas multiplied by
surface tension coefficient. Therefore, the internal energy
the liquid bridge system under consideration is controlled
three independent parameters, i.e. volumeV, Bond number
2pLh, and the position of center of massX, for a given
geometry and liquid.

FIG. 2. Fittings for critical exponentsb ~solid squares!, g ’s
~solid dots!, and d ~inset!. Solid squares are fitted byDX}uV
21.3133u1/2. Vertical dashed line indicatesVc51.3133. Solid dots
are fitted byKV}uV2Vcu21 both forV,Vc andV.Vc . Inset is the
plot of f 2 f c versusX2Xc . Fitting curve isf 2 f c}uX2Xcu3 giving
Xc50.0716.
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A thermodynamic potential of the liquid bridge for a fixe
L may be written as

c~X,V, f !5n R
sur f ace

ds2raE
volume

rdv

5S~X,V, f !2 f X ~2!

wheres, r, andv denote variables representing surface, l
eral distances from the axis, and volume, respectively. In
last expression,S is the area of the free surface of the liqu
bridge. Use ofR andnR2 has been made as units of leng
and energy, respectively.

We expandS(X,V, f ) in powers ofX. Then Eq.~2! is
written as

cL~X,V, f !5
1

2
AX21

1

3
BX31

1

4
CX42 f X, ~3!

since the constant term of the expansion forScan be set zero
and the linear term vanishes due to the condition of z
force atX50. It is natural to includeX3 in the expansion,
because our system is cylindrically symmetric. We will sho
below the validity of neglecting higher order terms nume
cally.

The coefficientsA, B, andC can be determined numer
cally by comparingS(X,V, f ) with the simulation data. Good
agreement between simulation data and surface func
shown in Fig. 3 indicates the adequacy of neglecting
terms higher thanO(X5) in Eq. ~3!. Figure 3 indicates tha
the area of the surface is decreasing in some region ofX asX
increases. This region indicated by~a! and ~b! for V51.35
corresponds to the unstable region mentioned above.

To describe the critical region, we move the origin of t
coordinate of Eq.~3! to (Xc , f t) in the (X, f ) plane in Fig. 1,
where f t denotes the values off giving a discontinuous tran
sition when V.Vc . Moving the origin to (Xc , f t) corre-
sponds to mapping the liquid-vapor type transition into

FIG. 3. Changes of surface area depending onX for severalV’s.
Fitting curve isDS5

1
2 AX21

1
3 BX31

1
4 CX42S0, whereS0 is the

surface area atX50. Region between~a! and ~b! for V51.35 is
unstable.
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magnetic type@19#. The f t , on the other hand, approachesf c
asV→Vc . Then Eq.~3! can be written as

cL~X,V, f !5
1

2
a~Vc2V!~X2Xc!

21
1

4
C~X2Xc!

4

2~X2Xc!~ f 2 f t!, ~4!

if the relations B523CXc , f t5(A22CXc
2)Xc , and A

23CXc
25a(Vc2V) are satisfied. Since the constant term

Eq. ~4! is physically meaningless, we can neglect it. The
three equalities must be checked numerically. The first t
relations are satisfied excellently in the transition region. T
small difference in the slope of Fig. 4~c! indicates that thea
obtained by the simulation data is a little bit different fro
that throughb fitting in Fig. 2. This difference stems from
the use of the asymmetric data shown in Fig. 1. We exp
very close slopes in Fig. 4~c!, if we use symmetric data.

The thermodynamic function of Eq.~4! is just the type of
Landau function, in other words them4 model, describing
phase transitions, which gives the classical exponents
mean-field theory. The liquid bridge we have studied nume
cally is a classical system treated within mean-field theo
and the transition from continuous to discontinuous chan
is of critical behavior, not of crossover.

We close this work with some remarks. We show that
behavior of the change of shape of the liquid bridge can
described by the volume induced phase transition driven
lateral body forces. The critical phenomena of this syst
follow those of mean-field theory. This is because the ene
of the system is expressed by surface tension, which is
averaged macroscopic quantity and therefore does not

FIG. 4. Check of validity for Eq.~5!. Solid dots are simulation
data of 2B/3C ~a!, (A22CXc

2)Xc ~b! where Xc52B/3C, and
(A23CXc

2) ~c!. Horizontal dashed line in~a! denotesXc50.0716.
Solid diamonds in~b! are values off t and those in~c! denotey
5auVc2Vu, wherea5269.8521 obtained byb fitting Fig. 2.
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clude the fluctuation in atomic scale. Having Landaum4

model ~4! from the primitive one~2! provides a theoretica
backup for the numerical analysis of this work. There is
correspondence between this system and the magnetic
tem whose Landau function is given by@18#

cL~m,T,H !5
1

2
b~T2Tc!m

21
1

4
cm42

mH

kBT
~5!
ac

m
d

.

Fl

y

02730
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whereb.0 andc.0. The variables, volumeV, body forcef,
and the position of the center of massX of this work corre-
spond to the temperature 1/(kBT), the external fieldH, and
the order parameterm of the magnetic system, respectivel
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