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Phase transitions and critical phenomena in the liquid bridge under lateral acceleration
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We study the shape of a liquid body under the influence of a lateral body force in a thin liquid bridge. The
shape of the liquid body changes continuously or discontinuously depending on the volume of liquid body. We
show that the transition from discontinuous to continuous change is described by the volume-induced phase
transition driven by the lateral body force. The order parameter of the phase transition is the amount of shift of
the center of mass of liquid body. Critical exponents of a mean-field model have been obtained by numerical
calculation. We provide the validity of this critical behavior through thfemodel of Landau theory of phase
transition.
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The investigation of phase transitions and critical phe-discontinuous transition from axisymmetric to nonaxisym-
nomena has a long history. This subject has been studiedetric asV increases for a given slenderness or as slender-
mainly from thermal fluctuations except in the case of quanfess decreases for a given volufi®,16].
tum fluctuations. We present in this work a phase transition We study the change of the shape of a liquid bridge driven
induced by nonthermal fluctuations. The system we treaby lateral body forces from the point of view of phase tran-
here is a liquid bridge, a liquid body joining two solid sur- sitions and critical phenomena. Since our interest is not in
faces. The problem of liquid bridges has attracted a gred€chnical applications but in physical understanding, we con-
deal of attention in the area of applied science recentlypider the simplest possible configuration of a liquid bridge,
[1-3]. For growing single crystals in the floating zone tech-1-€., a liquid body joining two concentric and parallel disks of
nique[4], liquid bridges can play an important role. In addi- the same radius under zero gravity. The inset of Fig. 1 shows
tion, the liquid bridges show an interesting behavior in thethe configuration explicitly. This simplest configuration is
change of morphology under the action of a lateral forcedescribed by dimensionless parameters, such as slenderness
which may be described by concepts of conventional critical=N/R, normalized volumeV=V,/(2h7R?), and the
phenomena and phase transitions. Bond numbernEpaRzlv, Wherep means the density dif-

The energy of a liquid with a free surface is dominated byference between liquid body and its environment ande-
the surface energy given by the surface tension times theotes the coefficient of surface tensidfy, is the volume of a
surface area that depends on the amount of deformation afiguid body anda is the lateral acceleratiorh and R are
volume. For a liquid bridge under the action of lateral force,geometric scales shown in the inset of Fig. 1.
the energy of the system is described by the lateral force in The purpose of this work is to understand the change of
addition to those two parameters. The amount of deformatiothe shape of a liquid body as a volume induced phase tran-
plays the role of order parameter describing the change of
morphology of a liquid bridge. Compared with the second 0.25 ' %
order phase transition of the conventional k[&d, one may -

expect that the lateral force and the volume play the roles ol g.og __F_\ii_wf_,_,—-——"‘
external field and temperature, respectively. We will show 2h

that this is the case in what follows. In addition, we analyze /
the morphology transition phenomena on a macroscopic 0.15F [7y,_; a5

scale, implying that there are no microscopic fluctuations in
the Hamiltonian of a liquid brdige. Thus mean field theory
will be sufficient to understand the morphology transition V=1.325

occurring in the liquid bridge. Special features such as ther- V=1.3125

mal fluctuations in nanometer length scale have been re g5} V=13
viewed[6].

The experiments on liquid bridges are restricted to special
conditions, such as Plateau’s tafk], millimetric liquid 0-0% :
bridge cell[8], and spacecraftd] due to a high sensitivity to '
body forces. Recently, electromagnetic levitation techniques
have been used to compensate the gravity of ¢8ittMany FIG. 1. Change of center of ma¥sdepending on lateral forde
studies have been done on the stability of liquid bridge forfor various volumes. The curves betweér 1.3125 andv/=1.325
various situations of joining solid surfaces and for axisym-correspond to volumeg=1.315, 1.3175, 1.32, and 1.3225, respec-
metric and nonaxisymmetric liquid bodig$,10—14. It has tively. Inset is the schematic diagram of liquid bridge used in this
been shown that the shape of a liquid bridge undergoes study.
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sition driven by lateral forces. For this purpose, we need to 30—
obtain stable equilibrium shape of a liquid bridge under lat-
eral acceleration for a given slenderness. The minimum en - 0.04
ergy method14] is a way to get a stable equilibrium shape.
The present method finds a stable equilibrium shape of ¢ 20} = 0.0}

0.06

liquid body by getting a configuration that has equal pres- 0.04
sures at any point of liquid surfaces. This method is more,z L -0.04 =
effective than the minimum energy method. We cover the <
liquid surface in terms of finite numbers of triangles for nu- 10 % Q&c 0.04 0.02

merical calculationg14,17]. The degree of accuracy in-
creases as the number of triangles increases.
The mechanical pressure is written as

oL 1'1 1 0.0
- n-F, n-V.E n.-VS 130 3 82
PN=-—5"="g5 ~' "5 1) v

FIG. 2. Fittings for critical exponentg (solid squares y's

wheren. is th tward normal unit vector at point E. = (solid dotg, and & (insed. Solid squares are fitted b;k?(oc|v
eren, is the outward normal unit vector at point ¥ —1.3133%2 Vertical dashed line indicateg,=1.3133. Solid dots

:V’E_ —vV.Sisthe fF)rce due to surface tension at point are fitted byKyo<|V— V.|~ both forV<V, andV>V,. Inset is the
r on the §urface, ang, is the small area of surface around piot of f — £, versusx— X, . Fitting curve isf — f .= |X— X|® giving
the pointr. X.=0.0716.

The position of the center of mass of a liquid body is

obtained after getting a stable shape for a given volume angrder transition is chosen as the length of vertical straight

Bond number and measured from the axis Qf disks. Th'?ine for a givenV>V, in Fig. 1. The slopes at broken lines
plays the role of an order parameter describing the phase

transition. Since the quantity, is a measure of lateral and the line with inflection correspond to compressibilities

body forces for a given liquid and a given geometrical Con_famd the critical isotherm, respectively. We plot these behav-

figuration, we introduce a new notatidnfor this quantity. lors in Fig. 2. o i
Figure 1 plots the position of center of ma$expressed in Solid squares in Fig. 2 show the ordering parametr
units of R, versusf= 7(V,/R%)=MaR?/v for various vol- versuts\_/.. Solid .dots show the change of the |so_chor|c com-
umes when only the value dfincreases. As the volume Pressibility defined byKy=(dX/df), by measuring maxi-
increases, a continuous transition changes into a discontinioum slopes in Fig. 1. The inset of Fig. 2 shows the relation
ous one near a renormalized volumve~1.3125, above betweenf—f.and|[X—X| atV., which corresponds to the
which the liquid bridge has a hump like the one shown in theequation of states af,. Solid lines are least-squares fits for
inset. Experiment§15,16 suggest that the lateral accelera- the functionsAX~|V,— V|2, Ky~|V—V, "1, and f—f,
tion is most sensitive to symmetry breaking of the shape in~|X—X.|® at V,=1.3133, which is obtained from the first
the parameter regime k3/<1.4 for the slendernesa fit. The last fit gives rise t&X;=0.0716. Good least-squares
=0.225. We, therefore, choose this region for our theoreticalit in the transition region imply the critical exponent of the
study. Even though many efforts have been devoted to studyrder parameted=1/2, compressibility exponenty= vy’
the effect of lateral acceleratid®,11,13, to our knowledge =1, and the exponent of critical isotheids= 3 [18,5]. These
no analysis has been made from phase transition point are well-known classical values of the exponents. In conclu-
view. sion, the analysis of Fig. 2 supports a critical transition rather
The lines of Fig. 1 are similar to those of the isotherms ofthan a crossover.
a pressure-volume diagram of the liquid-vapor phase transi- Even though above numerical analysis strongly implies
tion. This fact leads us to an understanding of the resultthe existence of critical phenomena in the liquid bridge, the-
through an analogy to phase transitions. It is interesting t@retical support is needed to clarify it. This can be done by
note that volumeV, body forcef, and center of masX in constructing a thermodynamic function appropriate for de-
Fig. 1 play the roles of inverse temperature, pressure, anscribing phase transitions. To make the problem simple, we
specific volume in the liquid-vapor transition, respectively.assume a fixed contact line between liquid and solid sur-
There is a hysteresis found in supercooling and supersaturéaces, which is the case when the edges are sharp. This con-
tion originating from a surface effedtl8]. Therefore, the dition makes the adhesion energy constant. We also assume
unstable regiof5] expressed by vertical lines in Fig. 1 looks the interaction energy inside the surface constant. Thus, the
asymmetric. The lines for decreasirigwill give another internal energy of this system is governed by the surface
asymmetric unstable region, shifted a little. The Maxwellenergy that is given by free-surface areas multiplied by the
construction will give rise to a symmetric unstable region,surface tension coefficient. Therefore, the internal energy of
which corresponds to the coexistence regime of left and righthe liquid bridge system under consideration is controlled by
humped states of a liquid bridge. three independent parameters, i.e. voluieBond number
We first analyze the critical behaviors of the second orde@« A , and the position of center of mad§ for a given
phase transition. The order paramets( describing second geometry and liquid.
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FIG. 3. Changes of surface area depending(dar severaN'’s. > 00 » ]
Fitting curve isAS=3AX?+iBX3+3CX*— S, whereS, is the 1ok T
surface area aX=0. Region betweeria) and (b) for V=1.35 is . 1 . 1 "
unstable. 1.30 1.31 1.32 1.33
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A thermodynamic potential of the liquid bridge for a fixed

) FIG. 4. Check of validity for Eq(5). Solid dots are simulation
A may be written as

data of —B/3C (a), (A—2CZX§)Xc (b) where X.=—-B/3C, and
(A—SCX§) (c). Horizontal dashed line ia) denotesX.=0.0716.

_ Solid diamonds in(b) are values off; and those in(c) denotey
YX V.= iurfaceds_ Pafmlumerdv — &|V— V|, wherea=—69.8521 obtained by fitting Fig. 2.
=S(X,V,f)—fX (2)  magnetic typd19]. Thef,, on the other hand, approactfes
g yp t

asV—V,. Then Eq.(3) can be written as
wheres, r, andv denote variables representing surface, lat-
eral distances from the axis, and volume, respectively. In the 1 1
last expressionSis the area of the free surface of the liquid YL (X, T) = Za(V— V) (X—X) 2+ C(X—X)*
bridge. Use ofR and vR? has been made as units of length 2 4
and energy, respectively. — (X=X (f—f), (4)
We expandS(X,V,f) in powers of X. Then Eq.(2) is

written as if the relationsB=—3CX,, fi=(A—2CX%)X,, and A

—3CX%=a(V,—V) are satisfied. Since the constant term of
1 1 1 c. . . .
g (X,V,F)= = AXZ+ ZBX3+ - CX*—fX, (3)  Edq. (4 is physically meaningless, we can neglect it. These
2 3 4 three equalities must be checked numerically. The first two
relations are satisfied excellently in the transition region. The
since the constant term of the expansionS@an be set zero small difference in the slope of Fig(e) indicates that thex
and the linear term vanishes due to the condition of zer@btained by the simulation data is a little bit different from
force atX=0. It is natural to includex® in the expansion, that throughg fitting in Fig. 2. This difference stems from
because our system is cylindrically symmetric. We will showthe use of the asymmetric data shown in Fig. 1. We expect
below the validity of neglecting higher order terms numeri-very close slopes in Fig.(d), if we use symmetric data.
cally. The thermodynamic function of E4) is just the type of
The coefficientsA, B, andC can be determined numeri- Landau function, in other words th@* model, describing
cally by comparindS(X,V,f) with the simulation data. Good phase transitions, which gives the classical exponents of
agreement between simulation data and surface functiomean-field theory. The liquid bridge we have studied numeri-
shown in Fig. 3 indicates the adequacy of neglecting thesally is a classical system treated within mean-field theory,
terms higher thar®(X®) in Eq. (3). Figure 3 indicates that and the transition from continuous to discontinuous changes
the area of the surface is decreasing in some regiohasfX s of critical behavior, not of crossover.
increases. This region indicated kg and (b) for V=1.35 We close this work with some remarks. We show that the
corresponds to the unstable region mentioned above. behavior of the change of shape of the liquid bridge can be
To describe the critical region, we move the origin of thedescribed by the volume induced phase transition driven by
coordinate of Eq(3) to (X.,fy) in the (X,f) plane in Fig. 1, lateral body forces. The critical phenomena of this system
wheref; denotes the values 6fgiving a discontinuous tran- follow those of mean-field theory. This is because the energy
sition whenV>V_.. Moving the origin to .,f;) corre- of the system is expressed by surface tension, which is an
sponds to mapping the liquid-vapor type transition into theaveraged macroscopic quantity and therefore does not in-
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clude the fluctuation in atomic scale. Having Landad  whereb>0 andc>0. The variables, volum¥, body forcef,
model (4) from the primitive one(2) provides a theoretical and the position of the center of ma%of this work corre-
backup for the numerical analysis of this work. There is aspond to the temperature K4T), the external fieldH, and
correspondence between this system and the magnetic s\sre order parametan of the magnetic system, respectively.

tem whose Landau function is given
g bys] This work was supported in part by Japan Science and
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